Friday, January 20, 2017

Exponentiell Gewichtet Gleitender Durchschnitt Xls

So berechnen Sie gewichtete gleitende Mittelwerte in Excel Verwenden exponentieller Glättung Excel-Datenanalyse für Dummies, 2. Edition Das exponentielle Glättungswerkzeug in Excel berechnet den gleitenden Durchschnitt. Die exponentielle Glättung gewichtet jedoch die in den gleitenden Durchschnittsberechnungen enthaltenen Werte, so daß neuere Werte einen größeren Einfluss auf die Durchschnittsberechnung haben und alte Werte einen geringeren Effekt haben. Diese Gewichtung wird durch eine Glättungskonstante erreicht. Um zu veranschaulichen, wie das Exponential-Glättungswerkzeug funktioniert, nehmen Sie an, dass Sie wieder die durchschnittliche tägliche Temperaturinformation betrachten. Gehen Sie folgendermaßen vor, um gewichtete gleitende Mittelwerte mit exponentieller Glättung zu berechnen: Um einen exponentiell geglätteten gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Data tab8217s Data Analysis. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste den Punkt Exponentielle Glättung aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld Exponentielle Glättung an. Identifizieren Sie die Daten. Um die Daten zu identifizieren, für die Sie einen exponentiell geglätteten gleitenden Durchschnitt berechnen möchten, klicken Sie in das Textfeld Eingabebereich. Identifizieren Sie dann den Eingabebereich, indem Sie entweder eine Arbeitsbereichsadresse eingeben oder den Arbeitsblattbereich auswählen. Wenn Ihr Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, aktivieren Sie das Kontrollkästchen Beschriftungen. Geben Sie die Glättung konstant. Geben Sie den Glättungskonstantenwert in das Textfeld Dämpfungsfaktor ein. Die Excel-Hilfedatei legt nahe, dass Sie eine Glättungskonstante zwischen 0,2 und 0,3 verwenden. Vermutlich jedoch, wenn Sie dieses Werkzeug verwenden, haben Sie Ihre eigenen Ideen, was die richtige Glättungskonstante ist. (Wenn you8217re ahnungslos über die Glättungskonstante, vielleicht sollten Sie shouldn8217t mit diesem Tool.) Sagen Sie Excel, wo die exponentiell geglättete gleitende durchschnittliche Daten platzieren. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsblattbereich zu identifizieren, in dem Sie die gleitenden Durchschnittsdaten platzieren möchten. Beispielsweise legen Sie die gleitenden Durchschnittsdaten in das Arbeitsblatt-Feld B2: B10. (Optional) Diagramm die exponentiell geglätteten Daten. Um die exponentiell geglätteten Daten darzustellen, aktivieren Sie das Kontrollkästchen "Diagrammausgabe". (Optional) Geben Sie an, dass Standardfehlerinformationen berechnet werden sollen. Um Standardfehler zu berechnen, aktivieren Sie das Kontrollkästchen Standardfehler. Excel legt Standardfehlerwerte neben den exponentiell geglätteten gleitenden Mittelwerten fest. Klicken Sie auf OK, nachdem Sie festgelegt haben, welche gleitenden durchschnittlichen Informationen Sie berechnen möchten und wo Sie sie platzieren möchten. Excel berechnet gleitende durchschnittliche Informationen. Wie Berechnung von EMA in Excel Erfahren Sie, wie die exponentiellen gleitenden Durchschnitt in Excel und VBA zu berechnen, und erhalten Sie eine kostenlose Web-Kalkulationstabelle. Die Kalkulationstabelle holt die Bestandsdaten von Yahoo Finance ab, berechnet die EMA (über dem gewählten Zeitfenster) und stellt die Ergebnisse dar. Der Download-Link ist unten. Die VBA kann angesehen und bearbeitet werden. Aber zuerst disover, warum EMA ist wichtig für technische Händler und Marktanalysten. Historische Aktienkurse werden oft mit vielen hochfrequenten Geräuschen belastet. Das verbirgt oft große Trends. Gleitende Durchschnitte helfen, diese kleinen Schwankungen auszugleichen, so dass Sie einen besseren Einblick in die allgemeine Marktrichtung erhalten. Der exponentielle gleitende Durchschnitt legt mehr Wert auf neuere Daten. Je größer die Zeitspanne, desto geringer die Wichtigkeit der aktuellsten Daten. EMA wird durch diese Gleichung definiert. (Multipliziert mit einem Gewicht) und yesterday8217s EMA (multipliziert mit 1-Gewicht) Sie müssen die EMA-Berechnung mit einer anfänglichen EMA (EMA 0) kickstart. Dies ist gewöhnlich ein einfacher gleitender Durchschnitt der Länge T. Die obige Tabelle gibt beispielsweise die EMA von Microsoft zwischen dem 1. Januar 2013 und dem 14. Januar 2014 an. Technische Händler verwenden oft die Kreuzung zweier gleitender Durchschnitte 8211 mit einer kurzen Zeitskala Und ein anderer mit einer langen Zeitskala 8211, um Buysellsignale zu erzeugen. Häufig werden 12- und 26-Tage-Gleitmittel verwendet. Wenn der kürzere gleitende Durchschnitt über dem längeren gleitenden Durchschnitt steigt, ist der Markt aufwärts tendiert, der dieses ein Kaufsignal ist. Allerdings, wenn die kürzere gleitende Mittelwerte fällt unter den langlebigen Durchschnitt, der Markt sinkt dies ist ein Verkaufssignal. Let8217s erlernen zuerst, wie man EMA using Arbeitsblattfunktionen berechnet. Danach entdecken wir, wie man VBA zur Berechnung von EMA verwendet (und automatisch Plot Diagramme) Berechnen Sie EMA in Excel mit Worksheet-Funktionen Schritt 1. Let8217s sagen, dass wir die 12-Tage-EMA von Exxon Mobil8217s Aktienkurs berechnen wollen. Wir müssen zunächst historische Aktienkurse 8211 erhalten, die Sie mit diesem Bulk-Aktien-Downloader tun können. Schritt 2 . Berechnen Sie den einfachen Durchschnitt der ersten 12 Preise mit Excel8217s Average () - Funktion. In der Screengrab unten, in Zelle C16 haben wir die Formel AVERAGE (B5: B16) wo B5: B16 enthält die ersten 12 schließen Preise Schritt 3. Unterhalb der Zelle, die in Schritt 2 verwendet wird, geben Sie die EMA Formel oben ein Dort haben Sie es You8217ve berechnete erfolgreich einen wichtigen technischen Indikator, EMA, in einer Kalkulationstafel. Berechnen EMA mit VBA Jetzt let8217s mechanisieren die Berechnungen mit VBA, einschließlich der automatischen Erstellung von Plots. Ich hab8217t zeigt Ihnen die volle VBA hier (es8217s in der Kalkulationstabelle unten), aber wir8217ll diskutieren die meisten kritischen Code. Schritt 1. Laden Sie historische Aktienkurse für Ihren Ticker von Yahoo Finance (mit CSV-Dateien) und laden Sie sie in Excel oder verwenden Sie die VBA in dieser Tabelle, um historische Zitate direkt in Excel zu erhalten. Ihre Daten können so aussehen: Schritt 2. Dies ist, wo wir brauchen, um ein paar braincells 8211 wir brauchen, um die EMA-Gleichung in VBA implementieren. Wir können R1C1-Stil verwenden, um programmgesteuert Formeln in einzelne Zellen eingeben. Untersuchen Sie das Code-Snippet unten. Blätter (quotDataquot).Range (quothquot amp EMAWindow 1) quotaverage (R-Ampère EMAWindow - 1 amp quotC-3: RC-3) - Blätter (quotDataquot).Range (quothquot amp EMAWindow 2 Ampere hquot amp numRows). FormulaR1C1 quotR0C-3 (2 (EMAWindow 1)) R-1C0 (1- (2 (EMAWindow1))) quot EMAWindow eine Variable ist, die die gewünschten Zeitfenster numRows gleich ist der Gesamtzahl der Datenpunkte 1 (8220 18221 liegt daran, We8217re unter der Annahme, dass die tatsächlichen Bestandsdaten in Zeile 2 beginnen, wird die EMA in Spalte h berechnet. Angenommen, dass EMAWindow 5 und Numrows 100 (dh es gibt 99 Datenpunkte), setzt die erste Zeile eine Formel in die Zelle h6, die das arithmetische Mittel berechnet Der ersten 5 historischen Datenpunkte Die zweite Zeile platziert Formeln in den Zellen h7: h100, die die EMA der verbleibenden 95 Datenpunkte berechnet. Schritt 3 Diese VBA-Funktion erzeugt einen Plot des engen Preises und der EMA. Set EMAChart ActiveSheet. ChartObjects. Add (Links: Range (quota12quot).Left, Breite: 500, Top: Range (quota12quot).Top, Höhe: 300) Mit EMAChart. Chart. Parent. Name quotEMA Chartquot Mit. SeriesCollection. NewSeries. Charttype xlLine. Values ​​Sheets (quotdataquot).Range (quote2: equot amp numRows).XValues ​​Sheets (quotdataquot).Range (quota2: aquot amp numRows).Format. Line. Weight 1.Name quotPricequot End With Mit. SeriesCollection. NewSeries. Charttype xlLine. AxisGroup XlPrimary. Values ​​Sheets (quotdataquot).Range (quoth2: hquot amp numRows).Name quotEMAquot. Border. ColorIndex 1.Format. Line. Weight 1 End With. Axes (xlValue, XlPrimary).HasTitle Wahre. Axes ( xlValue, XlPrimary).AxisTitle. Characters. Text quotPricequot. Axes (xlValue, XlPrimary).MaximumScale WorksheetFunction. Max (Sheets (quotDataquot).Range (quote2: equot amp numRows)).Axes (xlValue, XlPrimary).MinimumScale Int (Work · min (Sheets (quotDataquot).Range (quote2: equot amp numRows))).Legend. Position xlLegendPositionRight. SetElement (msoElementChartTitleAboveChart).ChartTitle. Text quotClose Preis amp quot amp EMAWindow amp quot-Day EMAquot End With Erhalten Sie diese Tabelle für die Voll funktionsfähige Implementierung des EMA-Rechners mit automatischem Download von historischen Daten. 14 Gedanken auf ldquo Wie man EMA in Excel berechnen rdquo Letztes Mal, als ich eine deiner Excel-Spreadsheets herunterbrachte, verursachte es mein Antivirusprogramm, es als PUP (mögliches unerwünschtes Programm) zu kennzeichnen, daß anscheinend es Code gab, der im Download eingeschlossen wurde, der adware war, Spyware oder zumindest potenzielle Malware. Es hat buchstäblich Tage, um meinen PC aufzuräumen. Wie kann ich sicherstellen, dass ich nur das Excel herunterladen Leider gibt es unglaubliche Mengen an Malware. Adware und Spywar, und Sie can8217t zu vorsichtig sein. Wenn es eine Frage der Kosten wäre ich nicht unwillig, eine angemessene Summe zu zahlen, aber der Code muss PUP frei sein. Danke, Es gibt keine Viren, Malware oder Adware in meinen Kalkulationstabellen. Ich programmierte sie selbst und ich weiß genau, was in ihnen drin ist. There8217s eine direkte Download-Link zu einer Zip-Datei am unteren Rand eines jeden Punktes (in dunkelblau, fett und unterstrichen). That8217s, was Sie herunterladen sollten. Hover über den Link, und Sie sollten einen direkten Link zu der Zip-Datei zu sehen. Ich möchte meinen Zugang zu Live-Preisen nutzen, um Live-Tech-Indikatoren (dh RSI, MACD usw.) zu schaffen. Ich habe gerade realisiert, um für absolute Genauigkeit brauche ich 250 Tage im Wert von Daten für jede Aktie im Gegensatz zu den 40 Ich habe jetzt. Gibt es irgendwo auf historische Daten von Dingen wie EMA, Avg Gain, Avg Verlust auf diese Weise könnte ich nur verwenden, dass genauere Daten in meinem Modell Statt der Verwendung von 252 Tage von Daten, um die richtige 14 Tage RSI Ich konnte nur ein extern bekommen Sourced Wert für Avg Gain und Avg Loss und gehen von dort möchte ich mein Modell, um Ergebnisse von 200 Aktien im Gegensatz zu ein paar zu zeigen. Ich möchte mehrere EMAs BB RSI auf dem gleichen Chart plotten und auf Bedingungen basieren, möchte den Handel auslösen. Dies würde für mich als Beispiel Excel Backtester. Können Sie mir helfen, Plot mehrere timeseries auf einem gleichen Diagramm mit dem gleichen Datensatz. Ich weiß, wie die Rohdaten zu einer Excel-Tabelle, aber wie wenden Sie die ema Ergebnisse gelten. Die ema in Excel-Tabellen können auf bestimmte Zeiträume angepasst werden. Danke kliff mendes sagt: Hallo Samir, erstmal danke eine Million für all deine harte Arbeit..outstanding job GOD BLESS. Ich wollte nur wissen, wenn ich zwei ema auf Diagramm gezeichnet haben, sagen wir 20ema und 50ema, wenn sie kreuzen, entweder oben oder unten kann das Wort KAUF oder VERKAUF an der Kreuzung Punkt erscheinen wird mir sehr helfen. Kliff mendes texas I8217m arbeiten auf einem einfachen Backtesting-Kalkulationstabelle that8217ll erzeugen Kauf-Verkaufssignale. Geben Sie mir einige time8230 Großer Job auf Diagrammen und Erklärungen. Ich habe eine Frage though. Wenn ich das Anfangsdatum zu einem Jahr später ändere und neueste EMA Daten betrachte, ist es merklich unterschiedlich, als wenn ich den gleichen EMA Zeitraum mit einem früheren Anfangsdatum für die gleiche neue Datumsreferenz verwende. Ist das, was Sie erwarten. Es macht es schwierig, auf veröffentlichte Diagramme mit EMAs angezeigt und sehen nicht das gleiche Diagramm. Shivashish Sarkar sagt: Hallo, ich bin mit Ihrem EMA-Rechner und ich wirklich zu schätzen wissen. Allerdings habe ich festgestellt, dass der Taschenrechner nicht in der Lage, die Graphen für alle Unternehmen (es zeigt Run time error 1004). Können Sie bitte erstellen Sie eine aktualisierte Version Ihres Rechners, in dem neue Unternehmen werden einbezogen werden Leave a Reply Cancel reply Wie die kostenlose Spreadsheets Master Knowledge Base Aktuelle Erraten Die exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Aromen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächlichen Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Also, wenn alpha (a) ein Gewichtungsfaktor (speziell eine 1m) ist, dann eine einfache Varianz sieht etwa so aus: Die EWMA verbessert auf einfache Varianz Die Schwäche dieser Ansatz ist, dass alle Renditen das gleiche Gewicht zu verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Aktienkursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkende Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet durch Lambda) plus der gestern zurückgelegten Rückkehr (gewogen von einem minus Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.)


No comments:

Post a Comment